Phase Diagrams

Submitted by ChemPRIME Staff on Thu, 12/16/2010 - 13:40


Solids as well as liquids exhibit vapor pressureThe pressure (or partial pressure) exerted by the gaseous form of a substance in equilibrium with the liquid form.. If you hang out a wet cloth in winter, the cloth first freezes as hard as a board, but after sufficient time all the ice evaporates and the cloth becomes soft and dry. Another solid which exhibits evidence of a vapor pressure is paraDescribes the relationship between two groups on a benzene-like ring that are attached to carbon atoms that have two other carbon atoms between them; the two groups are at a 180° angle.-dichlorobenzene, C6H4Cl2, which is used for mothballs. The fact that you can smell this solid from across the room means that some of its molecules must have evaporated into the air and entered your nose. Indeed, given a year or so, moth crystals will evaporate completely. Still another example is dry iceSolid carbon dioxide; called dry because of its tendency to sublime (form a gas without first forming a liquid). At standard pressure carbon dioxide sublimes at -78 °C., CO2(s), whose vapor pressure reaches atmospheric pressure at –78.5°C. Consequently CO2(s) sublimes, forming vapor without passing through the liquid state. Unlike ordinary ice, it remains dry, making it very convenient as a refrigerant.
Phase diagram of water. The scale has been distorted for purposes of diagrammatic clarity. Point T is the, triple point, C the critical point, B the boilingThe process of a liquid becoming vapor in which bubbles of vapor form beneath the surface of the liquid; at the boiling temperature the vapor pressure of the liquid equals the pressure of the gas in contact with the liquid. point, and F the freezingThe process of forming a solid from a liquid. point.


Like the vapor pressure of a liquid, the vapor pressure of a solid increases with temperatureA physical property that indicates whether one object can transfer thermal energy to another object.. This variation is usually presented in combination with other curves in a phase diagram, such as that for water in accompanying figure. The term phase in this context is used to distinguish solid, liquid, and gasA state of matter in which a substance occupies the full volume of its container and changes shape to match the shape of the container. In a gas the distance between particles is much greater than the diameters of the particles themselves; hence the distances between particles can change as necessary so that the matter uniformly occupies its container., each of which has its own distinctive properties, such as densityThe ratio of the mass of a sample of a material to its volume., viscosityThe resistance of a liquid to flow when subjected to shear stress., etc. Each phase is separated from the others by a boundary.

In the phase diagram for water, the variation of the vapor pressure of ice with temperature is shown by the line AT. As might be expected, the vapor pressure of ice is quite small, never rising above 0.006 atm (0.61 kPa). The vapor pressure of liquid water is usually much higher, as is shown by the curve TC. The point C on this curve corresponds to the critical point, and the vapor pressure is the critical pressureThe pressure required to convert a gas to a liquid at the critical temperature of a substance. of water, 218.3 atm (22 MPa). The curve stops at this point since any distinction between liquid and gas ceases to exist above the critical temperatureThe highest temperature at which the vapor of a substance can be converted to a liquid..

The other end of this vapor-pressure curve, point T, is of particular interest. At the temperature of point T (273.16 K or 0.01°C) both ice and water have the same vapor pressure, 0.006 atm. Since the same vapor is in equilibriumA state in which no net change is occurring, that is, in which the concentrations of reactants and products remain constant; chemical equilibrium is characterized by forward and reverse reactions occurring at the same rate. with both liquid and solid, it follows that all three phases, ice, water, and vapor, are in equilibrium at point T. This point is therefore referred to as the triple point.

Line TD remains to be discussed. This line describes how the melting pointThe temperature at which a solid becomes a liquid. Also called freezing point. of ice varies with pressure. In other words, it includes temperatures and pressures at which solid and liquid phases are in equilibrium. Note that the line is not exactly vertical. Point D corresponds to a slightly lower temperature than point T. This means that, as we increase the pressure on ice, its freezing point decreases. Again we can draw on everyday experience for an example of this behavior. A person on a pair of skates standing on ice exerts his or her whole weightA measure of the gravitational force on an object; directly proportional to mass. on the ice through the thin skate blade. The very high pressure immediately under the blade causes some ice to melt, affording lubrication which enables the skater to glide smoothly over the ice.


It should be emphasized that point T is not the normal freezing point of water. When we measure the normal freezing point of water (or any other liquid), we do so at standard atmospheric pressure in a container open to the air (part a of the next figure). In this container we have not only ice and water in equilibrium with each other but also air saturatedDescribes 1) a solution that contains the equilibrium concentration of a solute, or 2) an organic compound that contains no double or triple bonds (such as an alkane). with water vapor.


The normal freezing point(a) and triple point (b) of water.


The total pressure on the contents of this container is 1 atm (101.3 kPa) and its temperature is exactly 273.15 K (0.00°C). As far as liquid and solid are concerned, this corresponds to point F in the phase diagram.

If we could now pump all the air out of the container so that only pure water in its three phases was left, we would have the situation shown in part b. Ice, water, and pure water vapor, but no air, now occupy the container. The pressure has dropped from the 1.00 atm of the atmosphereA unit of pressure equal to 101.325 kPa or 760 mmHg; abbreviated atm. Also, the mixture of gases surrounding the earth. to the vapor pressure (0.006 atm). Because of this decrease in pressure, the meltingThe process of a liquid forming from a solid. point of ice increases slightly and the new equilibrium temperature is 0.01°C. This corresponds to the triple point of water, point T in the phase diagram.

Because the triple point is more readily attained (one need not be at sea level) and also more reproducible, it is now used as a primary reference temperature for the international thermodynamic scale of temperature. In SI unitsThe international system of units (Système International d'Unité) based on seven fundamental units: meter, kilogram, second, ampere, kelvin, candela, mole. the temperature of the triple point of water is defined as 273.16 K.