Table of Some Standard Free Energies of Formation at 298.15 K (25°C)

Submitted by ChemPRIME Staff on Thu, 12/09/2010 - 14:17

Compound ΔGfo /kJ mol-1 Compound ΔGfo /kJ mol-1
AgCl(s) -109.789 H2O(g) -228.572
AgN3(s) 591.0 H2O(l) -237.129
Ag2O(s) -11.2 H2O2(l) -120.35
Al2O3(s) -1582.3 H2S(g) -33.56
Br2(l) 0.0 HgO(s) -58.539
Br2(g) 3.110 I2(s) 0.0
CaO(s) -604.03 I2(g) 19.327
CaCO3(s) -1128.79 KCl(s) -409.14
C--graphite 0.0 KBr(s) -380.66
C--diamond 2.9 MgO(s) -569.43
CH4(g) -50.72 MgH2(s) 76.1
C2H2(g) 209.2 NH3(g) -16.45
C2H4(g) 68.15 NO(g) 86.55
C2H6(g) -32.82 NO2(g) 51.31
C6H6(l) 124.5 N2O4(g) 97.89
CO(g) -137.168 NF3(g) -83.2
CO2(g) -394.359 NaCl(s) -384.138
CuO(s) -129.7 NaBr(s) -348.983
Fe2O3(s) -742.2 O3(g) 163.2
HBr(g) -53.45 SO2(g) -300.194
HCl(g) -95.299 SO3(g) -371.06
HI(g) 1.7 ZnO(s) -318.3


This table includes Standard Free Energies of Formation for a number of substances at 298.15 K. The Free EnergyGibbs energy: a thermodynamic function corresponding to the tendency for spontaneous change in a system; represented by the symbol G. takes into account both the entropyA thermodynamic state function, symbol S, that equals the reversible heat energy transfer divided by temperature; higher entropy corresponds to greater dispersal of energy on the molecular scale. See also standard entropy. of the system, and the entropy change of the surroundings during a process, and thus provide a easy numerical means for determining spontaneity of a process.

This table is taken from CoreChem:The Free Energy.